
High-level Big Data Query Languages:
Pig and Hive

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

P&H 2

Acknowledgements
n The slides used in this chapter are adapted from the following

sources:
n CS498 Cloud Computing, by Roy Campbell and Reza

Farivar, UIUC.
n 15-319 Cloud Computing, by M. F. Sakr and M. Hammoud,

CMU Qatar
n CS525 Special Topics in DBs: Large-scale Data

Management, by Mohamed Eltabakh, WPI, Spring 2013
n CS345D Topics in Database Management, by Semih

Salihoglu, Stanford
n Olston et al, “Pig Latin: A Not-So-Foreign Language for Data

Processing,” ACM Sigmod 2008 presentation.
n Perry Hoekstra, Jiaheng Lu, Avinash Lakshman, Prashant

Malik, and Jimmy Lin, “NoSQL and Big Data Processing,
BigTable, Hbase, Cassandra, Hive and Pig”

n Cloudera Training Slides for Pig, Hive and Hbase
n All copyrights belong to the original authors of the materials.

P&H 3

Need for High-Level Languages
n Hadoop/MapReduce is great for large-data

processing!
n But writing Java programs for everything is verbose and

slow
n Not everyone wants to (or can) write Java code

n Solution: develop higher-level data processing
languages
n Pig: Pig Latin is a bit like Perl

n By Yahoo!
n Hive: HQL is like SQL

n By Facebook

P&H 4

Pig and Hive
n Pig: large-scale data processing system

n Scripts are written in Pig Latin, a dataflow language
n Developed by Yahoo!, now open source
n By 2009, roughly 40% of all Yahoo! internal Hadoop jobs

n Hive: data warehousing application in Hadoop
n Query language is HQL, variant of SQL
n Tables stored on HDFS as flat files
n Now Apache open source

n Common idea:
n Provide higher-level language to facilitate large-data

processing
n Higher-level language “compiles down” to Hadoop jobs

P&H 5

Why Pig ?
Because we bet you can read the following script:
– A Real Pig Script in Production:

Same Calculation in Hadoop/MapReduce would look like …

P&H 6

Why Pig ? (cont’d)

MapReduce Design Pattern 7

Recap: Map-Reduce Join Patterns

¢ Compute the natural join R(A,B) ⋈ S(B,C)

¢ R and S are each stored in files

¢ Tuples are pairs (a,b) or (b,c)

2/16/22

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

A C
a3 c1

a3 c2

a4 c3

R
S

⋈ =

MapReduce Design Pattern 8

Re-partition Join

¢ Use a hash function h from B-values to 1...k

¢ A Map process turns:
l Each input tuple R(a,b) into key-value pair (b,(a,R))
l Each input tuple S(b,c) into (b,(c,S))

¢ Map processes send each key-value pair with key b to
Reduce process h(b)
l Hadoop does this automatically; just tell it what k is.

¢ Each Reduce process matches all the pairs (b,(a,R)) with
all (b,(c,S)) and outputs (a,b,c).

2/16/22

MapReduce Design Pattern 9

Re-partition Join

MapReduce Design Pattern 10

Replicated Join

MapReduce Design Pattern 11

Composite Join

P&H 12

Why Pig ? (cont’d)
Faster Code Development

0
20
40
60
80
100
120
140
160
180

Hadoop Pig

1/20 the lines of code

0
50
100
150
200
250
300

Hadoop Pig
M
in
u
te
s

1/16 the development time

Performance on par with (maybe ~2 times slower than)
raw Hadoop!

Pig Slides adapted from Olston et al.

P&H 13

What is Pig ?
n Framework for analyzing large un-structured and semi-

structured data on top of Hadoop.
n Pig Engine Parses, compiles Pig Latin scripts into MapReduce

jobs run on top of Hadoop.
n Pig Latin is a dataflow language
n Pig is the high level language interface for Hadoop

P&H 14

Use Cases for Pig

n Ad hoc analysis of unstructured data
n Web Crawls, Log files, Click streams

n Pig is an excellent ETL tool
n “Extract, Transform, Load” for preprocessing data

before loading them to a Data Warehouse
n Rapid Prototyping for Analytics

n Let one to experiment with large data sets before
writing customized applications

P&H 15

Example Data Analysis Task

user url time
Amy www.cnn.com 8:00
Amy www.crap.com 8:05
Amy www.myblog.com 10:00
Amy www.flickr.com 10:05
Fred cnn.com/index.htm 12:00

url pagerank
www.cnn.com 0.9
www.flickr.com 0.9
www.myblog.com 0.7
www.crap.com 0.2

Find users who tend to visit “good” pages.

PagesVisits

. . .

. . .

Pig Slides adapted from Olston et al.

P&H 16

Pig Latin Script

Visits = load ‘/data/visits’ as (user,
url, time);
Visits = foreach Visits generate user,
Canonicalize(url), time;

Pages = load ‘/data/pages’ as (url,
pagerank);

VP = join Visits by url, Pages by url;
UserVisits = group VP by user;
UserPageranks = foreach UserVisits
generate user, AVG(VP.pagerank) as
avgpr;
GoodUsers = filter UserPageranks by
avgpr > ‘0.5’;

Store GoodUsers into '/data/good_users';

Pig Slides adapted from Olston et al.

Canonicaliz
e URLs

Join
url = url

Group by
user

Compute Average
Pagerank

Filter
avgPR > 0.5

Load
Pages(url,
pagerank)

Load
Visits(user,
url, time)

P&H 17

Pig Latin Script

Visits = load ‘/data/visits’ as (user,
url, time);
Visits = foreach Visits generate user,
Canonicalize(url), time;

Pages = load ‘/data/pages’ as (url,
pagerank);

VP = join Visits by url, Pages by url;
UserVisits = group VP by user;
UserPageranks = foreach UserVisits
generate user, AVG(VP.pagerank) as
avgpr;
GoodUsers = filter UserPageranks by
avgpr > ‘0.5’;

Store GoodUsers into '/data/good_users';

Pig Slides adapted from Olston et al.

Canonicaliz
e URLs

Join
url = url

Group by
user

Compute Average
Pagerank

Filter
avgPR > 0.5

Load
Pages(url,
pagerank)

Load
Visits(user,
url, time)

Operates directly over files

P&H 18

Pig Latin Script

Visits = load ‘/data/visits’ as (user, url, time);
Visits = foreach Visits generate user,
Canonicalize(url), time;

Pages = load ‘/data/pages’ as (url, pagerank);

VP = join Visits by url, Pages by url;
UserVisits = group VP by user;
UserPageranks = foreach UserVisits generate user,
AVG(VP.pagerank) as avgpr;

GoodUsers = filter UserPageranks by avgpr > ‘0.5’;

Store GoodUsers into '/data/good_users';

Pig Slides adapted from Olston et al.

Canonicaliz
e URLs

Join
url = url

Group by
user

Compute Average
Pagerank

Filter
avgPR > 0.5

Load
Pages(url,
pagerank)

Load
Visits(user,
url, time)

Schemas optional;
Can be assigned dynamically

P&H 19

Pig Latin Script

Visits = load ‘/data/visits’ as (user,
url, time);
Visits = foreach Visits generate user,
Canonicalize(url), time;

Pages = load ‘/data/pages’ as (url,
pagerank);

VP = join Visits by url, Pages by url;
UserVisits = group VP by user;
UserPageranks = foreach UserVisits
generate user, AVG(VP.pagerank) as
avgpr;
GoodUsers = filter UserPageranks by
avgpr > ‘0.5’;

Store GoodUsers into '/data/good_users';

Pig Slides adapted from Olston et al.

Canonicaliz
e URLs

Join
url = url

Group by
user

Compute Average
Pagerank

Filter
avgPR > 0.5

Load
Pages(url,
pagerank)

Load
Visits(user,
url, time)

User-defined functions (UDFs)
can be used in every construct

• Load, Store
• Group, Filter, Foreach

P&H 20

Conceptual Dataflow

Canonicalize URLs

Join
url = url

Group by user

Compute Average Pagerank

Filter
avgPR > 0.5

Load
Pages(url, pagerank)

Load
Visits(user, url, time)

P&H 21

Example to Illustrate (a slightly different) Program

LOAD
(user, url)

LOAD
(url, pagerank)

FOREACH
user, canonicalize(url)

JOIN
on url

GROUP
on user

FOREACH
user,

AVG(pagerank)

FILTER
avgPR> 0.5

(Amy, cnn.com)
(Amy, http://www.frogs.com)
(Fred, www.snails.com/index.html)

(Amy, www.cnn.com)
(Amy, www.frogs.com)
(Fred, www.snails.com)

(www.cnn.com, 0.9)
(www.frogs.com, 0.3)
(www.snails.com, 0.4)

(Amy, www.cnn.com, 0.9)
(Amy, www.frogs.com, 0.3)
(Fred, www.snails.com, 0.4)

(Amy, 0.6)
(Fred, 0.4)

(Amy, 0.6)

(Amy, www.cnn.com, 0.9)
(Amy, www.frogs.com, 0.3)

(Fred, www.snails.com, 0.4)

(Amy,

(Fred,)

)

P&H 22

System-Level Dataflow

.

Visits Pages
. . .

. . . join by url

the answer

loadload

canonicalize

compute average pagerank
filter

group by user

Pig Slides adapted from Olston et al.

P&H 23

MapReduce Code
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.KeyValueTextInputFormat;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.jobcontrol.Job;
import org.apache.hadoop.mapred.jobcontrol.JobC ontrol;
import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {
 public static class LoadPages extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String key = line.sub string(0, firstComma);
 String value = line.substring(firstComma + 1);
 Text outKey = new Text(key);
 // Prepend an index to the value so we know which file
 // it came from.
 Text outVal = new Text("1 " + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class LoadAndFilterUsers extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // Pull the key out
 String line = val.toString();
 int firstComma = line.indexOf(',');
 String value = line.substring(firstComma + 1);
 int age = Integer.parseInt(value);
 if (age < 18 || age > 25) return;
 String key = line.substring(0, firstComma);
 Text outKey = new Text(key);
 // Prepend an index to the value so w e know which file
 // it came from.
 Text outVal = new Text("2" + value);
 oc.collect(outKey, outVal);
 }
 }
 public static class Join extends MapReduceBase
 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,
 Iterator<Text> iter,
 OutputCollector<Text, Text> oc,
 Reporter reporter) throws IOException {
 // For each value, figure out which file it's from and
store it
 // accordingly.
 List<String> first = new ArrayList<String>();
 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {
 Text t = iter.next();
 String value = t.to String();
 if (value.charAt(0) == '1')
first.add(value.substring(1));
 else second.add(value.substring(1));

 reporter.setStatus("OK");
 }

 // Do the cross product and collect the values
 for (String s1 : first) {
 for (String s2 : second) {
 String outval = key + "," + s1 + "," + s2;
 oc.collect(null, new Text(outval));
 reporter.setStatus("OK");
 }
 }
 }
 }
 public static class LoadJoined extends MapReduceBase
 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(
 Text k,
 Text val,
 OutputColle ctor<Text, LongWritable> oc,
 Reporter reporter) throws IOException {
 // Find the url
 String line = val.toString();
 int firstComma = line.indexOf(',');
 int secondComma = line.indexOf(',', first Comma);
 String key = line.substring(firstComma, secondComma);
 // drop the rest of the record, I don't need it anymore,
 // just pass a 1 for the combiner/reducer to sum instead.
 Text outKey = new Text(key);
 oc.collect(outKey, new LongWritable(1L));
 }
 }
 public static class ReduceUrls extends MapReduceBase
 implements Reducer<Text, LongWritable, WritableComparable,
Writable> {

 public void reduce(
 Text key,
 Iterator<LongWritable> iter,
 OutputCollector<WritableComparable, Writable> oc,
 Reporter reporter) throws IOException {
 // Add up all the values we see

 long sum = 0;
 while (iter.hasNext()) {
 sum += iter.next().get();
 reporter.setStatus("OK");
 }

 oc.collect(key, new LongWritable(sum));
 }
 }
 public static class LoadClicks extends MapReduceBase
 implements Mapper<WritableComparable, Writable, LongWritable,
Text> {

 public void map(
 WritableComparable key,
 Writable val,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {
 oc.collect((LongWritable)val, (Text)key);
 }
 }
 public static class LimitClicks extends MapReduceBase
 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;
 public void reduce(
 LongWritable key,
 Iterator<Text> iter,
 OutputCollector<LongWritable, Text> oc,
 Reporter reporter) throws IOException {

 // Only output the first 100 records
 while (count < 100 && iter.hasNext()) {
 oc.collect(key, iter.next());
 count++;
 }
 }
 }
 public static void main(String[] args) throws IOException {
 JobConf lp = new JobConf(MRExample.class);
 lp.setJobName("Load Pages");
 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);
 lp.setOutputValueClass(Text.class);
 lp.setMapperClass(LoadPages.class);
 FileInputFormat.addInputPath(lp, new
Path("/user/gates/pages"));
 FileOutputFormat.setOutputPath(lp,
 new Path("/user/gates/tmp/indexed_pages"));
 lp.setNumReduceTasks(0);
 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);
 lfu.setJobName("Load and Filter Users");
 lfu.setInputFormat(TextInputFormat.class);
 lfu.setOutputKeyClass(Text.class);
 lfu.setOutputValueClass(Text.class);
 lfu.setMapperClass(LoadAndFilterUsers.class);
 FileInputFormat.add InputPath(lfu, new
Path("/user/gates/users"));
 FileOutputFormat.setOutputPath(lfu,
 new Path("/user/gates/tmp/filtered_users"));
 lfu.setNumReduceTasks(0);
 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);
 join.setJobName("Join Users and Pages");
 join.setInputFormat(KeyValueTextInputFormat.class);
 join.setOutputKeyClass(Text.class);
 join.setOutputValueClass(Text.class);
 join.setMapperClass(IdentityMap per.class);
 join.setReducerClass(Join.class);
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/indexed_pages"));
 FileInputFormat.addInputPath(join, new
Path("/user/gates/tmp/filtered_users"));
 FileOutputFormat.se tOutputPath(join, new
Path("/user/gates/tmp/joined"));
 join.setNumReduceTasks(50);
 Job joinJob = new Job(join);
 joinJob.addDependingJob(loadPages);
 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRE xample.class);
 group.setJobName("Group URLs");
 group.setInputFormat(KeyValueTextInputFormat.class);
 group.setOutputKeyClass(Text.class);
 group.setOutputValueClass(LongWritable.class);
 group.setOutputFormat(SequenceFi leOutputFormat.class);
 group.setMapperClass(LoadJoined.class);
 group.setCombinerClass(ReduceUrls.class);
 group.setReducerClass(ReduceUrls.class);
 FileInputFormat.addInputPath(group, new
Path("/user/gates/tmp/joined"));
 FileOutputFormat.setOutputPath(group, new
Path("/user/gates/tmp/grouped"));
 group.setNumReduceTasks(50);
 Job groupJob = new Job(group);
 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);
 top100.setJobName("Top 100 sites");
 top100.setInputFormat(SequenceFileInputFormat.class);
 top100.setOutputKeyClass(LongWritable.class);
 top100.setOutputValueClass(Text.class);
 top100.setOutputFormat(SequenceFileOutputF ormat.class);
 top100.setMapperClass(LoadClicks.class);
 top100.setCombinerClass(LimitClicks.class);
 top100.setReducerClass(LimitClicks.class);
 FileInputFormat.addInputPath(top100, new
Path("/user/gates/tmp/grouped"));
 FileOutputFormat.setOutputPath(top100, new
Path("/user/gates/top100sitesforusers18to25"));
 top100.setNumReduceTasks(1);
 Job limit = new Job(top100);
 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users
18 to 25");
 jc.addJob(loadPages);
 jc.addJob(loadUsers);
 jc.addJob(joinJob);
 jc.addJob(groupJob);
 jc.addJob(limit);
 jc.run();
 }
}

Pig Slides adapted from Olston et al.

2nd Pig Latin Example

24

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
urlCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
urlCategoryCount = join urlCounts by url, urlInfo by url;

gCategories = group urlCategoryCount by category;
topUrls = foreach gCategories generate top(urlCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Latin Execution

25

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
urlCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
urlCategoryCount = join urlCounts by url, urlInfo by url;

gCategories = group urlCategoryCount by category;
topUrls = foreach gCategories generate top(urlCounts,10);

store topUrls into ‘/data/topUrls’;

MR Job 1

MR Job 2

MR Job 3

UrlInfo(Url, Category, PageRank)

26

Visits(User, Url, Time)

MR Job 1: group
by url + foreach

UrlCount(Url, Count)

MR Job 2:join

UrlCategoryCount(Url, Category, Count)

MR Job 3: group by
category + for each

TopTenUrlPerCategory(Url, Category, Count)

Pig Latin: Execution

visits = load
‘/data/visits’ as (user, url,
time);
gVisits = group visits by
url;
visitCounts = foreach gVisits
generate url, count(visits);

urlInfo = load
‘/data/urlInfo’ as (url,
category, pRank);
visitCounts = join
visitCounts by url, urlInfo by
url;

gCategories = group
visitCounts by category;
topUrls = foreach
gCategories generate
top(visitCounts,10);

store topUrls into
‘/data/topUrls’;

P&H 27

Pig Latin: Language Features

n Keywords
n Load, Filter, Foreach Generate, Group By, Store,

Join, Distinct, Order By, …
n Aggregations

n Count, Avg, Sum, Max, Min
n Schema

n Defines at query-time not when files are loaded
n User Defined Functions (UDFs)

n As first-class citizens in the language
n UDFs can be written in other languages, e.g. Java,

Python, Javascript, etc
n Packages for common input/output formats

P&H 28

raw = LOAD 'excite.log' USING PigStorage('\t') AS (user, id, time, query);

clean1 = FILTER raw BY id > 20 AND id < 100;

clean2 = FOREACH clean1 GENERATE
user, time,
org.apache.pig.tutorial.sanitze(query) as query;

user_groups = GROUP clean2 BY (user, query);

user_query_counts = FOREACH user_groups
GENERATE group, COUNT(clean2), MIN(clean2.time), MAX(clean2.time);

STORE user_query_counts INTO 'uq_counts.csv' USING PigStorage(',');

Read file from HDFS The input format (text, tab delimited) Define run-time schema

Filter the rows on predicates

For each row, do some transformation

Grouping of records

Compute aggregation for each group

Store the output in a file Text, Comma delimited

An example w/ more details

NOTE: The records coming out of a GROUP BY statement have two fields, the key and the bag
of collected records. The key field is named “group” § The bag is named for the alias that
was grouped, so in this example, it will be named clean2 and have the same
schema as the relation clean2.
§ Thus the keyword “group” is overloaded in Pig Latin. This is unfortunate and confusing, but also
hard to change now.

P&H 29

Pig Latin: Data Types

P&H 30

Pig Latin: Expressions

f2.$0

P&H 31

Another example w/ more details

A = load '$widerow' using PigStorage('\u0001') as (name: chararray, c0: int, c1: int,
c2: int);
B = group A by name parallel 10;
C = foreach B generate group, SUM(A.c0) as c0, SUM(A.c1) as c1, AVG(A.c2) as c2;
D = filter C by c0 > 100 and c1 > 100 and c2 > 100;
store D into '$out';

Script can take arguments Data are “ctrl-A” delimited Define types of the columns

Specify the need of 10 reduce tasks

P&H 32

Pig Latin: Commands and Operators (1)

P&H 33

Pig Latin: Commands and Operators (2)

P&H 34

Pig Latin: Commands and Operators (3)

P&H 35

Pig Latin: Commands and Operators (4)

P&H 36

Pig Latin: Commands and Operators (5)

P&H 37

} STORE (& DUMP)
} Output data to a file (or screen)

STORE bagName INTO ‘filename’
<USING deserializer ()>;

} Other Commands (incomplete)
} UNION - return the union of two or more bags
} CROSS - take the cross product of two or more bags
} ORDER - order tuples by a specified field(s)
} DISTINCT - eliminate duplicate tuples in a bag
} LIMIT - Limit results to a subset

Pig Latin: Commands and Operators (6)

P&H 38

Example 3: Re-partition Join

register pigperf.jar;

A = load ‘page_views' using org.apache.pig.test.udf.storefunc.PigPerformanceLoader()

as (user, action, timespent, query_term, timestamp, estimated_revenue);

B = foreach A generate user, (double) estimated_revenue;

alpha = load ’users' using PigStorage('\u0001') as (name, phone, address, city, state, zip);

beta = foreach alpha generate name, city;

C = join beta by name, B by user parallel 40;

D = group C by $0;

E = foreach D generate group, SUM(C.estimated_revenue);
store E into 'L3out';

Register UDFs & custom inputformats

Function the jar file to read the input file

Group after the join (can reference columns by position)

Join the two datasets (40 reducers)

Load the second file

P&H 39

Example 3: Re-partition Join

P&H 40

Example 4: Replicated Join

register pigperf.jar;
A = load ‘page_views' using
org.apache.pig.test.udf.storefunc.PigPerformanceLoader()

as (user, action, timespent, query_term, timestamp,
estimated_revenue);
Big = foreach A generate user, (double) estimated_revenue;
alpha = load ’users' using PigStorage('\u0001') as (name, phone,
address, city, state, zip);
small = foreach alpha generate name, city;
C = join Big by user, small by name using ‘replicated’;
store C into ‘out';

Map-only join (the small dataset is the second)

Optimization in joining a big dataset with a small one

P&H 41

Example 4: Replicated Join

P&H 42

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;
(1,2,3)
(4,5,6)
(7,8,9)

SPLIT A INTO X IF f1<7, Y IF f2==5, Z IF (f3<6 OR f3>6);

DUMP X;
(1,2,3)
(4,5,6)

DUMP Y;
(4,5,6)

STORE x INTO 'x_out';
STORE y INTO 'y_out';
STORE z INTO 'z_out';

Example 5: Multiple Outputs

Split the records into sets

Dump command to display the data

Store multiple outputs

P&H 43

Run independent jobs in parallel

D1 = load 'data1' …

D2 = load 'data2' …

D3 = load 'data3' …

C1 = join D1 by a, D2 by b

C2 = join D1 by c, D3 by d
C1 and C2 are two independent jobs that can run
in parallel

P&H 44

What is UDF in Pig ?
n UDF - User Defined Function
n Types of UDF’s:

n Eval Functions (extends EvalFunc<String>)
n Aggregate Functions (extends EvalFunc<Long>

implements Algebraic)
n Filter Functions (extends FilterFunc)

n UDFContext
n Allows UDFs to get access to the JobConf object
n Allows UDFs to pass configuration information

between instantiations of the UDF on the front and
backends.

P&H 45

Sample UDF
public class TopLevelDomain extends

EvalFunc<String> {

@Override
public String exec(Tuple tuple) throws IOException {

Object o = tuple.get(0);
if (o == null) {

return null;
}
return Validator.getTLD(o.toString());

}
}

P&H 46

UDF In Action
n REGISTER '$WORK_DIR/pig-support.jar';

n DEFINE getTopLevelDomain
com.contextweb.pig.udf.TopLevelDomain();

n AA = foreach input GENERATE TagId,
getTopLevelDomain(PublisherDomain) as RootDomain

P&H 47

Pig Latin vs. SQL

n Pig Latin is procedural (dataflow programming model)
n Step-by-step query style is much cleaner and easier to write

n SQL is declarative but not step-by-step style

47

SQL

Pig
Latin

P&H 48

Pig Latin vs. SQL
• In Pig Latin

• Lazy evaluation (data not processed prior to STORE
command)

• Data can be stored at any point during the pipeline
• Schema and data types are lazily defined at run-time
• An execution plan can be explicitly defined

• Use optimizer hints
• Due to the lack of complex optimizers

• In SQL:
• Query plans are solely decided by the system
• Data cannot be stored in the middle
• Schema and data types are defined at the creation time

P&H 49

Pig Components

n High-level language (Pig Latin)
n Set of commands

Two Main
Components

Two modes

n Two execution modes
n Local: reads/write to local file system
n Mapreduce: connects to Hadoop

cluster and reads/writes to HDFS

n Interactive mode
n Console

n Batch mode
n Submit a script

P&H 50

Architecture of Pig

n Grunt – A Command Line Interface to Pig
n PigPen – Debugging Environment

P&H 51

Pig Compilation

P&H 52

Pig takes care of…
n Schema and type checking
n Translating into efficient physical dataflow

n (i.e., sequence of one or more MapReduce jobs)
n Exploiting data reduction opportunities

n (e.g., early partial aggregation via a combiner)
n Executing the system-level dataflow

n (i.e., running the MapReduce jobs)
n Tracking progress, errors, etc.

P&H 53

Logic Plan

A=LOAD 'file1' AS (x, y, z);

B=LOAD 'file2' AS (t, u, v);

C=FILTER A by y > 0;

D=JOIN C BY x, B BY u;

E=GROUP D BY z;

F=FOREACH E GENERATE
group, COUNT(D);

STORE F INTO 'output';

LOAD

FILTER

LOAD

JOIN

GROUP

FOREACH

STORE

P&H 54

Physical Plan

n 1:1 correspondence with the logical plan
n Except for:

n Join, Distinct, (Co)Group, Order
n Several optimizations are done automatically

P&H 55

Generation of Physical Plans

LOAD

FILTER

LOAD

JOIN

GROUP

FOREACH

STORE

LOAD

FILTER

LOAD

Map

STORE

Reduce

Map

FOREACH

Reduce

Reduce

 Map

LOAD

FILTER

LOAD

STORE

Reduce

Map

FOREACH

If the Join and Group By are on the same key
è The two map-reduce jobs would be merged into one.

P&H 56

Another Example: WordCount

Lines=LOAD ‘input/hadoop.log’ AS (line: chararray);
Words = FOREACH Lines GENERATE FLATTEN(TOKENIZE(line))
AS word;
Groups = GROUP Words BY word;
Counts = FOREACH Groups GENERATE group, COUNT(Words);
Results = ORDER Words BY Counts DESC;
Top5 = LIMIT Results 5;
STORE Top5 INTO /output/top5words;

P&H 57

Real World Example:
Counting sources of Twitter users

Where are users querying from? The API, the
front page, their profile page, etc?

P&H 58

Another Real World example:
Correlating Big Data at Twitter

What is the correlation between users with registered
phones and users that tweet?

P&H 59

One more Real World example:
How to distinguish Bot from Human at Twitter ?

Digression to
Apache Tez

Dryad & Tez 61

Apache Tez – Introduction
n Distributed execution framework

targeting data-processing
applications.
n NOT a standlone computation engine like

MapReduce or Spark ; Instead, it is
intended to be use as a “backend” library

n Based on expressing a computation
as a DAG dataflow graph.
n Claim to be inspired by Dryad

n Highly customizable to meet a broad
spectrum of use cases.

n Built on top of YARN – the resource
management framework for Hadoop.

Dryad & Tez 62

Hadoop 1 -> Hadoop 2

HADOOP 1.0

HDFS
(redundant, reliable storage)

MapReduce
(cluster resource management

& data processing)

Pig
(data flow)

Hive
(sql)

Others
(cascading)

HDFS2
(redundant, reliable storage)

YARN
(cluster resource management)

Tez
(execution engine/ framework)

HADOOP 2.0
Data Flow

Pig
SQL
Hive

Others
(Cascading)

Batch
MapReduce Real Time

Stream
Processing
Storm

Online
Data

Processing
HBase,

Accumulo

Monolithic
• Resource Management
• Execution Engine
• User API

Layered
•Resource Management – YARN
•Execution Engine – Tez
•User API – Hive, Pig, Cascading, Your
App, even experimental support for
MapReduce and Spark !!

P&H 63

TeZ: An Alternative Execution Library for
realizing Pig’s Logical Computation Plan

(since Pig rel. 14)
Step 1. The Required Data Processing Flow is represented as a
Directed-Acyclic Graph (DAG) (which is what PIG has been doing all
along)

Step 2. TeZ can then be used to realize/execute the DAG-based
dataflow/computation to avoid limitations imposed by the rigid 2-stage
MapReduce model

P&H 64

MapReduce (MR) vs. TeZ-based Execution Plans of
a Sample Pig Job:

P&H 65

MapReduce (MR) vs. TeZ-based Execution Plans of
Another Sample Pig Job:

P&H 66

Pig-TeZ Performance Gain over Pig-MapReduce

Note: These results are published by Hortonworks, a major contributor to TeZ

P&H 67

Pig References

n Pig Documentation
n http://pig.apache.org/docs/r0.15.0/ (as of June 2015)

n PigMix Queries (Test-suite testing and
Benchmarking)
n https://cwiki.apache.org/PIG/pigmix.html

http://pig.apache.org/docs/r0.13.0/
https://cwiki.apache.org/PIG/pigmix.html

P&H 68

Hive

P&H 69

Hive: Background
n Started at Facebook
n Data was collected by nightly cron jobs into Oracle DB
n “ETL” via hand-coded python
n Grew from 10s of GBs (2006) to 1 TB/day new data (2007)
n Recent Hive Usage @ Facebook:

n 300+ PB of Data under management [1] ;
n 600+ TB new data loaded per day [2];
n 60K+ Hive queries per day
n 1000+ users per day

n HQL, a variant of SQL
n But since we can only read already existing files in HDFS it is

lacking UPDATE or DELETE support for example
n Focuses primarily on the query part of SQL
n Paper published later by Thusoo et al, VLDB 2009
n Initial Apache release in April 2009

[1] https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
[2] https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-

corona/10151142560538920

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920

P&H 70

Apache Hive
n A data warehouse infrastructure built on top of Hadoop

for providing data summarization, query, and analysis
n Hive Provides

n ETL
n Structure
n Access to different storage (HDFS or HBase)
n Query execution via MapReduce

n Key Building Principles
– SQL is a familiar language
– Extensibility – Types, Functions, Formats, Scripts
– Scalability and Performance – ability to process queries for

TB/PB of data

P&H 71

Hive Use Cases

Large-scale Data Processing with SQL-style
Syntax:
nPredictive Modeling & Hypothesis Testing
nCustomer Facing Business Intelligence
nDocument Indexing
nText Mining and Data Analysis

P&H 72

Hive Components

n High-level language (HiveQL)
n Set of commandsTwo Main

Components

Two modes

n Two execution modes
n Local: reads/write to local file system
n Mapreduce: connects to Hadoop

cluster and reads/writes to HDFS

n Interactive mode
n Console

n Batch mode
n Submit a script

P&H 73

Digression:
Background on Relational Database and SQL

Materials from Lecture Videos by Profs. Joe Hellerstein and Alvin
Cheung; extracted from the UC Berkeley course CS186:
Introduction to Database Management Systems
n https://cs186berkeley.net/fa21/
n https://www.youtube.com/user/CS186Berkeley/playlists

In particular,
n SQL Part I:

https://www.youtube.com/playlist?list=PLzzVuDSjP25R1px8yE4wJcXcRbwsCuunP

n SQL Part II:
https://www.youtube.com/playlist?list=PLzzVuDSjP25QapEtTMxw56ZtKRf62lkL_

https://cs186berkeley.net/fa21/
https://www.youtube.com/user/CS186Berkeley/playlists
https://www.youtube.com/playlist?list=PLzzVuDSjP25R1px8yE4wJcXcRbwsCuunP
https://www.youtube.com/playlist?list=PLzzVuDSjP25QapEtTMxw56ZtKRf62lkL_

P&H 74

Hive: Example
n Hive looks similar to an SQL database
n Relational join on two tables:

n Table of word counts from Shakespeare collection
n Table of word counts from Homer

Source: Material drawn from Cloudera training VM

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN homer k ON (s.word = k.word) WHERE s.freq >= 1

AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

P&H 75

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN homer k ON (s.word = k.word) WHERE s.freq >= 1

AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF homer k) (= (.
(TOK_TABLE_OR_COL s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION
(TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word))
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL k) freq)))
(TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k) freq) 1)))
(TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

P&H 76

Hive: Behind the Scenes
STAGE DEPENDENCIES:

Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1

Map Reduce
Alias -> Map Operator Tree:

s
TableScan

alias: s
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 0
value expressions:

expr: freq
type: int
expr: word
type: string

k
TableScan

alias: k
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 1
value expressions:

expr: freq
type: int

Reduce Operator Tree:
Join Operator

condition map:
Inner Join 0 to 1

condition expressions:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:
expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean

Select Operator
expressions:

expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int

outputColumnNames: _col0, _col1, _col2
File Output Operator

compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2
Map Reduce

Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002

Reduce Output Operator
key expressions:

expr: _col1
type: int

sort order: -
tag: -1
value expressions:

expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int

Reduce Operator Tree:
Extract

Limit
File Output Operator

compressed: false
GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator

limit: 10

P&H 77

Data Model for Hive
Hive deals with Structured Data, of different types:
3-Levels: Tables à Partitions à Buckets
nTables

n Typed columns (int, float, string, boolean)
n Similar to Tables in RDBMS
n Each Table is a Unique directory in HDFS
n Also, list: map (for JSON-like data)

nPartitions
n To determine the distribution of data within a Table

n For example, range-partition tables by date
n Each Partition is a sub-directory of the main directory in HDFS

nBuckets (or Clusters)
n Partitions can be further divided into Buckets

n e.g.Hash partitions within ranges (useful for sampling, join optimization)
n Each Bucket is stored as a file in the directory

Source: cc-licensed slide by Cloudera

Very similar to SQL and
Relational DBs

P&H 78

HiveQL Commands
n Data Definition Language (DDL)

n Used to describe, view and alter Tables
n e.g. CREATE TABLE, DROP TABLE commands with extensions to

define file formats, partitioning and bucketing information
n Data Manipulation Language (DML)

n Used to load data from external tables and insert rows using the
LOAD and INSERT commands

n Query Statements
n SELECT, JOIN, UNION, etc

n Refer to http://hortonworks.com/wp-
content/uploads/2016/05/Hortonworks.CheatSheet.SQLtoHive.pdf

for “Cheat Sheet” for subtle differences between SQL and Hive QL.

http://hortonworks.com/wp-content/uploads/2016/05/Hortonworks.CheatSheet.SQLtoHive.pdf

P&H 79

Hive Data Definition Language (DDL)
CREATE TABLE sample (foo INT, bar STRING) PARTITIONED BY (ds STRING);

SHOW TABLES '.*s';

DESCRIBE sample;

ALTER TABLE sample ADD COLUMNS (new_col INT);

DROP TABLE sample;

Schema is known at creation time (like DB schema)

Partitioned tables have “sub-directories”, one for each partition

A table in Hive is an HDFS
directory in Hadoop

P&H 80

Hive Data Manipulation Language (DML)

LOAD DATA LOCAL INPATH './sample.txt' OVERWRITE INTO TABLE sample;

LOAD DATA INPATH '/user/falvariz/hive/sample.txt’ INTO TABLE
partitioned_sample PARTITION (ds='2012-02-24');

Load data from local file system Delete previous data from that table

Load data from HDFS Augment to the existing data

Must define a specific partition for partitioned tables

Loaded data are files copied to HDFS under
the corresponding directory

P&H 81

User Defined Functions (UDFs) in Hive
Four Types
nUser Defined Functions (UDF)

n Perform tasks such as Substr, Trim, etc on data elements
nUser Defined Aggregation Function (UDAF)

n Perform Operations on Columns, e.g. Sum, Average, Max, Min,…
nUser Defined Table-Generating Functions (UDTF)

n Output a new table
e.g. the “Explode” function which is similar to FLATTEN() in Pig

nCustom MapReduce scripts
n The MR scripts must read rows from standard output
n Write rows to standard input

P&H 82

Compilation of Hive Programs

Another Hive Example

83

INSERT TABLE UrlCounts
(SELECT url, count(*) AS count
FROM Visits
GROUP BY url)

INSERT TABLE UrlCategoryCount
(SELECT url, count, category
FROM UrlCounts JOIN UrlInfo ON (UrlCounts.url = UrlInfo .url))

SELECT category, topTen(*)
FROM UrlCategoryCount
GROUP BY category

UrlInfo(Url, Category, PageRank)Visits(User, Url, Time)

MR Job 1: select
from-group by

UrlCount(Url, Count)

MR Job 2:join

UrlCategoryCount(Url, Category, Count)

MR Job 3: select
from-group by

TopTenUrlPerCategory(Url, Category, Count)

Hive Final Execution

INSERT TABLE UrlCounts
(SELECT url, count(*) AS count
FROM Visits
GROUP BY url)

INSERT TABLE UrlCategoryCount
(SELECT url, count, category
FROM UrlCounts JOIN UrlInfo ON
(UrlCounts.url = UrlInfo .url))

SELECT category, topTen(*)
FROM UrlCategoryCount
GROUP BY category

Architecture of Hive

P&H 86

Hive Components
HDFS

Hive CLI
DDL Queries Browsing

Map Reduce

MetaStore

Thrift API

SerDe
Thrift Jute JSON..

Execution

Hive QL

Parser

Planner

Mg
m

t.
 W

eb
 U

I

n Hive CLI: Hive Client Interface
n MetaStore: For storing the schema information, data

types, partitioning columns, etc…
n Hive QL: The query language, compiler, and executer

P&H 87

Hive Components
n Shell: allows interactive queries
n Driver: session handles, fetch, execute
n Compiler: parse, plan, optimize
n Execution engine: DAG of stages (MR, HDFS,

metadata)
n Metastore: schema, location in HDFS, etc

Source: cc-licensed slide by Cloudera

P&H 88

Metastore
n Database: namespace containing a set of tables
n Holds table definitions (column types, physical

layout)
n Holds partitioning information
n Can be stored in Derby, MySQL, and many other

relational databases

Source: cc-licensed slide by Cloudera

P&H 89

Recap: Hive Data Model

n Table: maps to a HDFS directory
n Table R: Users all over the world

n Partition: maps to sub-directories under the table
n Partition R by country name
n It is the user’s responsibility to upload the right data to the right

partition

n Bucket: maps to files under each partition
n Divide a partition into buckets based on a hash function on a

certain column(s)

P&H 90

Data Model (Cont’d)

Logical Partitioning

Hash
 Partitioning

Schema

Library

clicks

HDFS MetaStore

/hive/clicks

/hive/clicks/ds=2008-03-25

/hive/clicks/ds=2008-03-25/0

…

Tables

#Buckets=32
Bucketing Info
Partitioning Cols

P&H 91

Physical Layout
n Warehouse directory in HDFS

n E.g., /user/hive/warehouse
n Tables stored in subdirectories of warehouse

n Partitions form subdirectories of tables
n Actual data stored in flat files

n Control char-delimited text, or SequenceFiles
n With custom SerDe, can use arbitrary format

Source: cc-licensed slide by Cloudera

P&H 92

Query Examples I: Select & Filter

SELECT foo FROM sample WHERE ds='2012-02-24';

INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT *
FROM sample WHERE ds='2012-02-24';

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hive-sample-
out' SELECT * FROM sample;

Create HDFS dir for the output

Create local dir for the output

P&H 93

Query Examples II: Aggregation & Grouping

SELECT MAX(foo) FROM sample;

SELECT ds, COUNT(*), SUM(foo) FROM sample GROUP BY ds;

FROM sample s INSERT OVERWRITE TABLE bar SELECT s.bar,
count(*) WHERE s.foo > 0 GROUP BY s.bar;

Hive allows the From clause to come first !!! Store the results into a table

This new syntax is to facilitate the “Multi-Insertion”

P&H 94

Query Examples III: Multi-Insertion

FROM page_view_stg pvs
INSERT OVERWRITE TABLE page_view PARTITION(dt='2008-06-08',
country='US')

SELECT pvs.viewTime, … WHERE pvs.country = 'US'
INSERT OVERWRITE TABLE page_view PARTITION(dt='2008-06-08',
country='CA')

SELECT pvs.viewTime, ... WHERE pvs.country = 'CA'
INSERT OVERWRITE TABLE page_view PARTITION(dt='2008-06-08',
country='UK')

SELECT pvs.viewTime, ... WHERE pvs.country = 'UK';

P&H 95

Example IV: Joins

CREATE TABLE customer (id INT,name STRING,address STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '#';

CREATE TABLE order_cust (id INT,cus_id INT,prod_id INT,price INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';

SELECT * FROM customer c JOIN order_cust o ON (c.id=o.cus_id);

SELECT c.id, c.name, c.address, ce.exp
FROM customer c JOIN (SELECT cus_id,sum(price) AS exp

FROM order_cust
GROUP BY cus_id) ce ON (c.id=ce.cus_id);

P&H 96

MapReduce (MR) vs. TeZ-based Execution Plans for
a Sample Hive Job

P&H 97

Hive-TeZ Performance Gain over Hive-MapReduce

Note: These results are published by Hortonworks, a major contributor to TeZ

P&H 98

More Performance Comparison among
Other Alternative Execution Engines for Hive

Note: These results are published by Hortonworks, a major contributor to TeZ

P&H 99

More Performance Comparison among
Other Alternative Execution Engines for Hive

Short running query+
ETL+
Large joins and aggregates+
Slower than Spark-SQL in Map joins

High Garbage Collection

Instability

SQL support limited compared to Hive

Lack of sophisticated query optimizer

Efficient resource utilization+

Map join performance+
Large Joins

Outperforms Spark-SQL in large join+

Slower than Tez for large joins and aggregates

High Garbage Collection

Hive on Tez

Spark-SQL

Hive on Spark

Hive on MapReduce

Promising initial release+

Note: These results are published by Hortonworks, a major contributor to TeZ

P&H 100

More alternatives to Hive for SQL-for-Hadoop/Big Data:
BigSQL, Spark SQL, Impala, Presto, HAWQ,…

Note: Performance Results reported in this page were produced by IBM.

n BigSQL (from IBM) provides an alternative execution engine (without
using Hadoop/TeZ) but preserves Hive Storage and Hive metastore ;
n Unlike Hive or Spark-SQL, BigSQL provides 100% ANSI SQL compatibility (by

leveraging IBM’s deep experience in SQL from its database products like DB2)
n However, BigSQL is not open-source and you need to buy it from IBM

n Spark SQL, Spark SQL over Parquet, Spark SQL over Kudu
n Impala (Cloudera): Impala-Kudu, Impala-Parquet
n Presto (Facebook ->Teradata -> Starburst)
n HAWQ (Pivotal -> Hortonworks HDB -> Apache ->?)
n Apache Phoenix: Phoenix (SQL) over Hbase

Kafka 101

Big Data Frameworks Adoption Trends

